OEIS

6 articles

2019 passée au crible

2018 sur drgoulu.com Bon, ok, j’ai été trop actif sur Quora et n’ai publié que 8 articles ici l’année passée, mais il y a tout de même eu 299’047 pages de DrGoulu.com vues en 2018, légèrement plus qu’en 2017. L’article sur l’amiante a été nettement plus lu (27’548) que celui sur le mouvement perpétuel (11’457), mais […]

Suites infinies en Python

Depuis que je programme en Python, j’entasse les petits bouts de code utiles ou potentiellement réutilisables dans “Goulib”, ma librairie perso et néanmoins disponible en open-source (licence LGPL)  sur Pypi, GitHub, ReadTheDocs pour la doc, avec des notebooks Jupyter de démo. Comme la valeur d’un code se mesure surtout par les tests qui vérifient son bon fonctionnement, […]

Comment calculer le 10’000’000’000’000’000’000 ème terme de la suite de Fibonacci

Tombé l’autre jour sur un problème idiot mais intéressant : calculer le 10^19 ième terme de la suite de Fibonacci. Idiot parce que ça ne sert à rien. Intéressant parce que ça sous-entend qu’il existe une manière de calculer le n-ième terme de cette suite définie par récurrence sans calculer les termes précédents. En effet, calculer les termes les uns après les autres prendrait dans les 300’000 ans à raison d’une microseconde par terme.

Chasse aux nombres acratopèges

En utilisant l’ Encyclopédie en ligne des suites de nombres entiers pour un article précédent, j’ai découvert qu’elle pouvait m’aider pour une vieille idée : la recherche de nombres acratopèges.

Le mot “Acratopège” signifie “sans propriété particulière” et on ne le trouve plus que sur l’étiquette de quelques bouteilles d’eau faiblement minéralisée.

Les nombres entiers sont soit pairs, soit impairs. Certains sont premiers, d’autres des carrés ou des cubes d’autres nombres. Au fil des siècles, les mathématiciens ont ainsi défini des centaines de propriétés particulières dont jouissent certains nombres et ont rangés les nombres en suites définissant ces propriétés: